45 research outputs found

    On the spot-futures no-arbitrage relations in commodity markets

    Full text link
    In commodity markets the convergence of futures towards spot prices, at the expiration of the contract, is usually justified by no-arbitrage arguments. In this article, we propose an alternative approach that relies on the expected profit maximization problem of an agent, producing and storing a commodity while trading in the associated futures contracts. In this framework, the relation between the spot and the futures prices holds through the well-posedness of the maximization problem. We show that the futures price can still be seen as the risk-neutral expectation of the spot price at maturity and we propose an explicit formula for the forward volatility. Moreover, we provide an heuristic analysis of the optimal solution for the production/storage/trading problem, in a Markovian setting. This approach is particularly interesting in the case of energy commodities, like electricity: this framework indeed remains suitable for commodities characterized by storability constraints, when standard no-arbitrage arguments cannot be safely applied

    An optimal trading problem in intraday electricity markets

    Get PDF
    We consider the problem of optimal trading for a power producer in the context of intraday electricity markets. The aim is to minimize the imbalance cost induced by the random residual demand in electricity, i.e. the consumption from the clients minus the production from renewable energy. For a simple linear price impact model and a quadratic criterion, we explicitly obtain approximate optimal strategies in the intraday market and thermal power generation, and exhibit some remarkable properties of the trading rate. Furthermore, we study the case when there are jumps on the demand forecast and on the intraday price, typically due to error in the prediction of wind power generation. Finally, we solve the problem when taking into account delay constraints in thermal power production.Comment: 39 pages, 11 figure

    A probabilistic numerical method for optimal multiple switching problem and application to investments in electricity generation

    Get PDF
    In this paper, we present a probabilistic numerical algorithm combining dynamic programming, Monte Carlo simulations and local basis regressions to solve non-stationary optimal multiple switching problems in infinite horizon. We provide the rate of convergence of the method in terms of the time step used to discretize the problem, of the size of the local hypercubes involved in the regressions, and of the truncating time horizon. To make the method viable for problems in high dimension and long time horizon, we extend a memory reduction method to the general Euler scheme, so that, when performing the numerical resolution, the storage of the Monte Carlo simulation paths is not needed. Then, we apply this algorithm to a model of optimal investment in power plants. This model takes into account electricity demand, cointegrated fuel prices, carbon price and random outages of power plants. It computes the optimal level of investment in each generation technology, considered as a whole, w.r.t. the electricity spot price. This electricity price is itself built according to a new extended structural model. In particular, it is a function of several factors, among which the installed capacities. The evolution of the optimal generation mix is illustrated on a realistic numerical problem in dimension eight, i.e. with two different technologies and six random factors

    A McKean-Vlasov approach to distributed electricity generation development

    Full text link
    This paper analyses the interaction between centralised carbon emissive technologies and distributed intermittent non-emissive technologies. In our model, there is a representative consumer who can satisfy her electricity demand by investing in distributed generation (solar panels) and by buying power from a centralised firm at a price the firm sets. Distributed generation is intermittent and induces an externality cost to the consumer. The firm provides non-random electricity generation subject to a carbon tax and to transmission costs. The objective of the consumer is to satisfy her demand while mini\-mising investment costs, payments to the firm and intermittency costs. The objective of the firm is to satisfy the consumer's residual demand while minimising investment costs, demand deviation costs, and maximising the payments from the consumer. We formulate the investment decisions as McKean-Vlasov control problems with stochastic coefficients. We provide explicit, price model-free solutions to the optimal decision problems faced by each player, the solution of the Pareto optimum, and the Stackelberg equilibrium where the firm is the leader. We find that, from the social planner's point of view, the carbon tax or transmission costs are necessary to justify a positive share of distributed capacity in the long-term, whatever the respective investment costs of both technologies are. The Stackelberg equilibrium is far from the Pareto equilibrium and leads to an over-investment in distributed energy and to a much higher price for centralised energy

    Numerical investigations on global error estimation for ordinary differential equations

    Get PDF
    AbstractFour techniques of global error estimation, which are Richardson extrapolation (RS), Zadunaisky's technique (ZD), Solving for the Correction (SC) and Integration of Principal Error Equation (IPEE) have been compared in different integration codes (DOPRI5, DVODE, DSTEP). Theoretical aspects concerning their implementations and their orders are first given. Second, a comparison of them based on a large number of tests is presented. In terms of cost and precision, SC is a method of choice for one-step methods. It is much more precise and less costly than RS, and leads to the same precision as ZD for half its cost. IPEE can provide the order of the error for a cheap cost in codes based on one-step methods. In multistep codes, only RS and IPEE have been implemented since they are the only ones whose theoretical justification has been extended to this case. There, RS still provides a more reliable estimation than IPEE. However, as these techniques are based on variations of the global error, irrespective of the numerical method used, they fail to provide any more usefull information once the numerical method has reached its limit of accuracy due to the finite arithmetic

    Forward Hedging and Vertical Integration in Electricity Markets.

    Get PDF
    This paper analyzes the interactions between vertical integration and (wholesale) spot, forward and retail markets in risk management. We develop an equilibrium model that fits electricity markets well. We point out that vertical integration and forward hedging are two separate levers for demand and spot price risk diversification. We show that they are imperfect substitutes as to their impact on retail prices and agents’ utility because the asymmetry between upstream and downstream segments. While agents always use the forward market, vertical integration may not arise. In addition, in presence of highly risk averse downstream agents, vertical integration may be a better way to diversify risk than spot, forward and retail mar kets. We illustrate our analysis with data from the French electricity market.producers; hedging; forward; spot; vertical integration; retailers; electricity markets;

    A probabilistic numerical method for optimal multiple switching problems in high dimension

    Get PDF
    In this paper, we present a probabilistic numerical algorithm combining dynamic programming, Monte Carlo simulations and local basis regressions to solve non-stationary optimal multiple switching problems in infinite horizon. We provide the rate of convergence of the method in terms of the time step used to discretize the problem, of the regression basis used to approximate conditional expectations, and of the truncating time horizon. To make the method viable for problems in high dimension and long time horizon, we extend a memory reduction method to the general Euler scheme, so that, when performing the numerical resolution, the storage of the Monte Carlo simulation paths is not needed. Then, we apply this algorithm to a model of optimal investment in power plants in dimension eight, i.e. with two different technologies and six random factors
    corecore